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Abstract 
 
Our understanding of the complexities of the flow mechanism in Shale plays has not kept up with our industry’s interest in 
these prolific and hydrocarbon rich formations. Furthermore, massive multi-cluster, multi-stage hydraulic fractures, that have 
proven to be essential for economic recovery from Shale plays, have significantly increased the complexity of the flow 
behavior and consequently have made the modeling efforts more challenging. 
 
In this paper, the application of a recently developed AI (Artificial Intelligence)-based reservoir modeling approach on 
Marcellus Shale is presented. In this approach, data mining and pattern recognition techniques were used to initiate modeling 
of the hydrocarbon production (dray gas and condensate) from Marcellus Shale. Instead of imposing our understanding of 
flow and transport in shale gas media, which is a very complex and non-linear system, we allow the production history, 
reservoir characteristics, and hydraulic fracturing data and operational constraint to force their will on our model and 
determine its behavior.  
 
In this work, the full-field history matching process was performed on a Marcellus shale asset including 135 wells with 
multiple pads and different landing targets. The full field AI-based Marcellus Shale model then used for forecasting the 
future well/reservoir performance to assist in planning field development strategies. The goodness of match quality is self-
evident, thereby validating this modeling approach. Nevertheless, to examine the model validity in the forecasting mode, the 
field data was partially matched and then attempted forecasting. Taking validation one-step further, the production 
performance of a recently drilled well, which was completely blind to the model (was not involved during training and initial 
validation), was predicted and compared with actual field measurement. 
 
Furthermore, sensitivity and economic analysis are performed in order to identify the impact of different reservoir 
descriptions (e.g. different reservoir characteristics, stimulation and completion factors) and rank the impact of above-
mentioned parameters on the Net Present Value (NPV) of investing on gas wells producing from Marcellus Shale. 
 
Introduction 
 
Shale gas has attracted attention throughout the world. As a result, there has been a lot of research on the shale gas reservoirs 
focusing toward improving the understanding of the flow mechanism especially in pore scale, adsorbed gas, lithofacies and 
mineralogy identification and finally upsacling the physics to macro scale that can be used in numerical simulation model. 
 
On the other hand, hydraulic fracture initiation and propagation, which is essential in productivity of shale plays, is subject of 
many researches. Different studies have been done trying to incorporate the stimulation zone in flows simulation (e.g. by 
wing longitudinal fracture and Stimulated reservoir volume).Still there is a debate on what’ happinening to the more than 60 
to 70% trapped injected water. Are they really act as a proppant (C.A Economides, 2011) or they cause formation damage?  
 
As stated by Swami and Settari, 2012, the equations and mathematical models developed for conventional sandstone and 
carbonate hydrocarbon reservoirs (pore size range 1- 100 micron) are not applicable for shale with pores at nanoscale. For 
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that reason modifying the reservoir and/or stimulated reservoir volume (SRV) parameters (without much physical support) to 
match production data may not be correct way of simulating the behavior of these complex resources. 
 
It seems that in history matching and generally shale gas simulation, as in so many other things (George S Wattley, SPE TIG-
Simulation): As we know, there are known knowns. There are things we know we know. We also know there are known 
unknowns. That is to say, we know there are some things we do not know. But there are also unknown unknowns, the ones 
we don't know we don't know."(Donald Rumsfeld Feb. 12, 2002 Department of Defense news briefing)  
 
Having said that, there are a lot of potential for research in these areas and many questions needed to be answered. With no 
doubt, further understanding of physics from molecular to macro scale should be implemented in numerical simulation in 
order to make it as a powerful tools in modeling and simulation of shale gas reservoir. 
 
Here we will not prescribing a final solution to the problem, instead we are trying to give a hand to the shale modeler by 
introducing an alternative approach which is based on pattern recognition of Artificial Intelligence. The authors believe that 
the coupled numerical and artificial intelligence approach can be an effective way to model shale gas production behavior, 
since they are looking at the same problem but from different angle. 
 
AI-based Shale gas modeling- This approach is a formalized, comprehensive and very first full-field empirical shale model 
using patter recognition of Artificial Intelligence. The main step in development of AI-based model includes Spatio-temporal 
database development, Simultaneous training and history matching of the reservoir model, Sensitivity analysis and 
quantification of uncertainties and finally Deployment of the model in predictive mode.  
 
During the AI-based shale model development and history matching, the static model is not modified. Lack of such 
modifications may present a weakness of this technology, knowing the fact that the static model includes inherent 
uncertainties. To address this, the AI-based Reservoir Modeling workflow includes a comprehensive set of sensitivity and 
uncertainty analyses.  
 
In this step, the developed and history matched model is thoroughly examined against a wide range of changes in reservoir 
characteristics and/or operational constraints. The changes in pressure or production rate at each well are examined against 
potential modification of any and all the parameters that have been involved in the modeling process. These sensitivity and 
uncertainty analyses include single- and combinatorial-parameter sensitivity analyses, quantification of uncertainties using 
Monte Carlo simulation methods and finally development of type curves. All these analyses can be performed on individual 
wells, groups of wells or for the entire field. 
 
Finally, similar to any other reservoir simulation model, the trained, history matched and validated AI-based shale reservoir 
model is deployed in predictive mode in order to be used for performing reservoir management and decision making 
purposes. 
 
History Matching and Forecasting -Application to Marcellus Shale 
 
135 Marcellus shale wells with multiple pads, different landing targets, well length and reservoir properties in Southwestern 
Pennsylvania were used in this study. In this process, all available data including static, dynamic, completion, hydraulic 
fracturing, and operational constraint etc. was used for neural network training and validation of the model. After optimizing 
the number of input parameters and considering different flow regimes, well type and inner –outer distance of target well to 
its offset, a fullfield Marcellus shale history matched model was achieved. 

Table 1 shows the input parameters for history matched model. (For further information about the history matching process 
of Marcellus shale please refer to SPE 161184 from the same authors and due to confidentiality the monthly gas rates were 
not shown in the figures) 

Acceptable history matching result for entire field and for individual wells were achieved and are shown in Figure 1.The left 
one represent the fullfield history matching result while the right graphs shows the example of good(top) and bad(bottom) 
result for selected wells. 
 
In this graph, the orange dots represent the actual monthly rate for the entire field while the green solid line shows the AI-
based model results. The orange shadow represents the actual cumulative production (normalized) while the green one is 
corresponding to cumulative production output (normalized) by AI-based model. The red bar chart at the bottom of the plots 
shows the number of active Marcellus wells as a function of time. 
 
The model is a multilayer neural network that is trained using a back-propagation technique. Data were partitioned with a 
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80% training fraction, 20% for calibration and verification (10% for each). The crossplot for predicted and actual values of 
monthly flow rate(Mscf/m) are shown in  Figure 2 .These plots show that the trained network also work very well for the 
blind data. 

Table 1- List of the input parameters in history matched model 

 
 

  
 

Figure 1.History matching result for entire field (left), good (top right) and bad (bottom right) well 

 
 

Figure 2.NN training, calibration, and verification results-(R2 of 0.99, 0.97, and 0.975 respectively) 
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Forecasting Production Behavior 
  
The goodness of match quality is self-evident, thereby validating this modeling approach. Nevertheless, to examine the 
model validity in the forecasting mode, the well and field data were partially matched and then attempted forecasting (Step 
1). Taking validation one-step further,/ the production performance of a recently drilled well, which was completely blind to 
the model (was not involved during training and initial validation), was predicted and compared with actual field 
measurement (Step 2). 
 
In the first step, 20% of last production history was removed from the training data set. Since the length of production for 135 
wells is varying between 16 and 67 months, therefore last 4 to 14 months of production were removed to examine the 
forecasting ability of the model (Blind history match). Additionally, the AI-based model was run to forecast additional 12 
months. 
 
For blind history matching of last 4 to 14 months, the number of days of production for that period was included in the 
training set. The averaged flowing wellhead pressure for the last three months was used as a constraint for the blind history 
matching forecasting period (4 to 14 months and an additional year). 
 
Figure 3 shows the blind history matching and additional one year forecasting results for two wells with 27 and 36 months of 
production history correspondingly as an example. In this graph, the orange dots represent the actual monthly rate 
(normalized) while the green solid line shows the AI-based model results. The black dots show the actual production data that 
was removed from the training and tried to be predicted by model. Last six and eight months of production were removed 
from training (20% of total month of production) and AI-based model could predict the production behavior of those periods 
with acceptable accuracy. 
 

       
 

Figure 3. Blind history matching and additional forecasting for two well with 27 and 36 months of production history respectively 
(left to right) 

As a complement to step one of validation process, last four months of production were consistently removed for all the wells 
and tried to predict the production rate for those months.   

Figure 4 shows the blind history matching results as well as forecasting for additional year. By looking at actual production 
for the last four months, a sudden increase in rate at second month can be clearly observed, that might be because of high 
demand of natural gas over the winter, then the production followed its natural declining behavior at forth month. Therefore, 
the model could predict total production rate for the first and fourth month good enough but it underestimate the total rate for 
second and third months.  

The error for predicting the production rate of those four months is varying from 1.4 to 9.2%, for each individual, which 
shows the capability of model in prediction mode.  
   

 

Blind History Match-6 MonthsBlind History Match-8 Additional 1‐year 
forecast 

Additional 1‐year 
forecast
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Figure 4. . Blind history matching of last four months and additional year of forecasting for entire field 
 

In second step (final) of testing the capability of model for forecasting the production performance, the operator provided the 
location of a new pad including five recently drilled wells that are producing for five month in the study area The wellhead 
pressure for all the wells was kept at 200 psi (based on the closest offset wells).  
 
For the first run, number of days of production was not included in the model and it was assumed that all the wells are 
producing for whole month. In the second run, the provided number of days of production was included in predictive model. 
The forecasting results for all five new wells and the location of them in part of area of study are shown in (Figure 5). 
 
In this figure, the red line represents the completely blind forecasted cumulative production without including the no. of days 
of production while the blue dashed line shows forecasted cumulative production by including the no. of days of production. 
The black dots are actual cumulative production for five months. Additional seven months of forecasting are identified by a 
grid dashed box. 

Figure 5 shows the range of error for forecasted cumulative production, for those new wells with five months of history, 
between 8.7 to 21.7%. More than 10% error in the forecast might be attributed to very short production history for those new 
wells. Nevertheless AI-Based Marcellus Shale model shows its capability on predicting and forecasting of new well/s 
performance. 

It has to be mentioned that the properties of the new wells were not available and neural network used the average static 
parameter, completion and stimulation data from the nearby wells.  
 
Sensitivity Analysis 

Sensitivity analysis is a quantitative method of determining the effect of parameter variation on model results. Single-
Parameter sensitivity analysis is performed on a pad. During Single-Parameter sensitivity analysis parameters are selected 
one at a time to be studied. While all other parameters are kept constant at their original value, the value of the target 
parameter is varied throughout its range and the model output (3, 12, 21, and 30 months cum. gas production) is calculated 
(using the predictive model) and plotted for each variation.  Figure 6 shows the sensitivity analysis results for selected 
response parameters after 3, 12, 21 and 30 months of production from a single pad with six horizontal wells. 

 

  Blind History Match-
Last 4 Months 

Additional 1-year 
forecast 
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Figure 5.Location of new pad including five wells in a part of study area 

By comparing all four-tornado charts, it can be clearly seen that four parameters consistently play significant role in short and 
long-term cum. production. These parameters are stimulated lateral length, slurry volume, amount of proppant and 
breakdown pressure (BDP)  

It has to be noted that since all the parameters (but the one being analyzed) are kept constant at their original value, these 
analyses for some of the parameters may look a bit strange from time to time. This is the result of an intuitively linear 
analysis (single-parameter sensitivity analysis) performed on a highly non-linear system. 

Given the fact that gas and condensate production from Marcellus Shale that is the result of massive, multi-stage, multi-
cluster hydraulic fracturing that is performed on long lateral wells is anything but linear, such sensitivity analyses may not be 
telling of the whole story. To examine the simultaneous impact of changes in multiple parameters in a highly non-linear 
system other techniques such as Monte Carlo Simulation that are statistically sound are required. 
 
Marcellus Shale AI-Based Type Curves 

Upon successful development of the AI-based Marcellus shale model, type curves can be generated to assist operators during 
the decision making process on where to place the next well (or which wells should get priority for drilling) and how to 
complete and stimulate it. Type curves can be generated for individual wells, for groups of wells and for the entire field. In 
type curves, the y-axis is the model output (in this case, 365 days cum. gas production). The x-axis should be selected from 
one of the input parameters and curves represent a third parameter. 
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Figure 7 shows a set of 365 days cum. production type curves for total amount of injected slurry volume (bbl), total 
Marcellus porosity (%), total stimulated lateral length (ft) and total amount of proppant (lb) as a function of total number of 
clusters. 

 

Figure 6.Tornado charts showing the uncertainties affecting different response parameters. (a) After3 months cum. production for a 
pad, (b) After 12 months cum. production, (c) After 21 months cum. production (d) After 30 months cum. production  

 

Figure 7. Type Curves for a well showing changes in 365 Days Cum. Gas as a function of Number of Stages and different slurry 
volume (bbl), porosity (%), Stimulated lateral length (ft) and total proppant (lb) 
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Economic Analysis 

Although the advanced technologies of horizontal drilling and hydraulic fracturing make the extraction of natural gas from 
extremely tight reservoir such as Marcellus shale feasible, this question is always being asked that if it would be 
advantageous to do. There are some problems associated with shale gas production based on recent market changes in the 
natural gas industry that raise concerns about economic viability of this phenomenon. 

In order to determine the profitability of Marcellus shale wells in the studied area, an economic analysis by using various cost 
components and different gas prices was performed. The net present value (NPV) of the cash flows and internal rate of return 
(IRR) was calculated for each scenario of gas price. Profitability was gauges based on whether the values were positive or 
negative for the resulting NPV calculations and if the IRR values were greater than the minimum acceptable rate of return of 
10 percent (Duman 2012). 

Several cost components and assumptions were taken into account for economical calculation, are briefly explained below: 

Royalty Costs- The royalty rates in the Marcellus Shale currently range from a minimum of 12.5 percent to 18 percent with 
the average rate of 17% per gross revenue that is currently being offered in Pennsylvania (Duman 2012). 
 
Lease Acquisition costs -Lease bonus payments in the Marcellus Shale can range from several hundred dollars per acre to 
over $10,000 per acre with the current average being approximately $3,450 per acre (Duman 2012). 
 
Site Preparation and Permission fees -For a total wellbore length of 10,000 feet, an application fee of $2,600 and a bond 
amount of $2,500 is required. The approximate costs associated with prepping a site for drilling amount to roughly $400,000 
(Duman 2012). 
 
Drilling and Completion Costs -The drilling and completion costs associated with a 10000 ft long well (3000 ft lateral length 
& 10 stages) in southwestern PA is about 4.0 MM$. 
 
Operating Costs -The operating costs were assumed to remain constant at $0.70 per mcf throughout the life of the well 
(Duman 2012). 
 
State and Federal Income Taxes -A state corporate tax rate of 9.99 percent and a Federal income tax rate of 34% was 
utilized to the analysis (Duman 2012). 
 
Economic analysis was performed based on 10 years of forecasted dry gas production for one of the recently drilled wells, 
which was used for final model validation previously. The annual production of this well is based on the minimum wellhead 
pressure of 200 Psi. Three different gas prices of four, five and six ($/Mscf) with annual increase of 2% was considered.  

The cash flow statement was constructed based on above-mentioned assumptions and the net present value and internal rate 
of return was calculated in order to determine the overall profitability of the well. Table 2 shows a summary of results of a 
typical Marcellus shale gas well under the ten-year production. 

Table 2: Results for the Cash Flow Statement for a well with 10 years production 

Initial Gas Price 
($/Mscf) 

Cumulative Gas in 
10 years (BCF) 

Total 
CAPEX ($) 

Total Operating 
Costs in 10 years 

Total Income 
after Tax ($) 

NPV ($)  IRR (%) 

4.0  2.8 BCF  3.1 MM 1.9 MM 4.54 MM 0.43 MM 16
5.0  2.8 BCF  3.1 MM 1.9 MM 5.97 MM 1.55 MM 34
6.0  2.8 BCF  3.1 MM 1.9 MM 7.39 MM 2.65 MM 50

 

Based on the positive NPV and an acceptable IRR (>10%), this new gas well under the assumptions and values used in this 
analysis was found to be profitable based on ten-years of production.  
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Conclusions 
 

1. An alternative approach for shale gas modeling based on data mining and pattern recognition technology was 
proposed and successfully applied to the Marcellus shale asset with multiple wells. Fullfield history matching was 
achieved with acceptable accuracy. The history-matched model went through a series of verification and validation 
process to investigate the capability of the developed AI-based model in forecasting the future performance of 
current wells as well as proposed wells in the area of study by taking out the hidden information which is embedded 
within the production data. 

 
2. In order to identify the impact of different parameters on production behavior, sensitivity analysis was performed 

and a series of type curves was developed. 
 

3. Given the assumptions made and input values used for economic analysis shows that the new well with forecasted 
10 years of production not only recoup the initial investment but also make profit considerably. 
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